Max Phase Materials: Advancements in Corrosion Prevention

MAX materials and MXene materials are new two-dimensional materials which have attracted much attention recently, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in numerous fields. The following is an in depth overview of the properties, applications, and development trends of MAX and MXene materials.

Precisely What is MAX material?

MAX phase material is actually a layered carbon nitride inorganic non-metallic material composed of M, A, X elements on the periodic table, collectively referred to as “MAX phase”. M represents transition metal elements, such as titanium, zirconium, hafnium, etc., A represents the primary group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer consists of M, A, X, the 3 elements of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they are widely used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding as well as other fields.

Properties of MAX material

MAX material is really a new type of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, composed of three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A refers back to the main-group elements, and X refers back to the elements of C or N. The MXene material is a graphene-like structure obtained by the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX Phases and MXenes are novel two-dimensional nanomaterials made up of carbon, nitrogen, oxygen, and halogens.

Applications of MAX materials

(1) Structural materials: the wonderful physical properties of MAX materials make them have a wide range of applications in structural materials. For example, Ti3SiC2 is a common MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.

(2) Functional materials: Besides structural materials, MAX materials will also be used in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and may be used to manufacture electromagnetic shielding covers, coatings, etc. In addition, some MAX materials also provide better photocatalytic properties, and electrochemical properties may be used in photocatalytic and electrochemical reactions.

(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be utilized in energy materials. As an example, K4(MP4)(P4) is one of the MAX materials rich in ionic conductivity and electrochemical activity, which can be used a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.

Exactly What are MXene materials?

MXene materials are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The surface of MXene materials can connect with more functional atoms and molecules, along with a high specific surface, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation methods of MXene materials usually range from the etching management of the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties such as electrical conductivity, magnetism and optics can be realized.

Properties of MXene materials

MXene materials are a new type of two-dimensional transition metal carbide or nitride materials composed of metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the cabability to maintain high strength and stability at high temperatures.

Applications of MXene materials

(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are commonly used in energy storage and conversion. For instance, MXene materials bring electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Additionally, MXene materials may also be used as catalysts in fuel cells to improve the action and stability from the catalyst.

(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. For instance, MXene materials can be used as electromagnetic shielding coatings, electromagnetic shielding cloth, and other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.

(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and may be used in sensing and detection. For example, MXene materials can be used as gas sensors in environmental monitoring, which may realize high sensitivity and high selectivity detection of gases. Furthermore, MXene materials could also be used as biosensors in medical diagnostics as well as other fields.

Development trend of MAX and MXene Materials

As new 2D materials, MAX and MXene materials have excellent performance and application prospects. In the future, with all the continuous progress of science and technology and also the improving demand for services for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials will be further expanded and improved. The subsequent aspects can become the focus of future research and development direction:

Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and techniques could be further explored to realize a much more efficient, energy-saving and eco-friendly preparation process.

Optimization of performance: The performance of MAX and MXene materials has already been high, but there is still room for further optimization. Down the road, the composition, structure, surface treatment as well as other facets of the content may be studied and improved in depth to improve the material’s performance and stability.

Application areas: MAX materials and MXene materials happen to be commonly used in many fields, but there are still many potential application areas to be explored. Down the road, they can be further expanded, including in artificial intelligence, biomedicine, environmental protection and other fields.

In conclusion, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show an extensive application prospect in numerous fields. Using the continuous progress of technology and science and the continuous improvement of application demand, the preparation technology, performance optimization and application parts of MAX and MXene materials is going to be further expanded and improved.

MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.